SV-kNNC: An Algorithm for Improving the Efficiency of k-Nearest Neighbor
نویسندگان
چکیده
This paper proposes SV-kNNC, a new algorithm for k-Nearest Neighbor (kNN). This algorithm consists of three steps. First, Support Vector Machines (SVMs) are applied to select some important training data. Then, k-mean clustering is used to assign the weight to each training instance. Finally, unseen examples are classified by kNN. Fourteen datasets from the UCI repository were used to evaluate the performance of this algorithm. SV-kNNC is compared with conventional kNN and kNN with two instance reduction techniques: CNN and ENN. The results show that our algorithm provides the best performance, both predictive accuracy and classification time.
منابع مشابه
An Enhancement of k-Nearest Neighbor Classification Using Genetic Algorithm
K-Nearest Neighbor Classification (kNNC) makes the classification by getting votes of the k-Nearest Neighbors. Performance of kNNC is depended largely upon the efficient selection of k-Nearest Neighbors. All the attributes describing an instance does not have same importance in selecting the nearest neighbors. In real world, influence of the different attributes on the classification keeps on c...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملDrought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملNon-zero probability of nearest neighbor searching
Nearest Neighbor (NN) searching is a challenging problem in data management and has been widely studied in data mining, pattern recognition and computational geometry. The goal of NN searching is efficiently reporting the nearest data to a given object as a query. In most of the studies both the data and query are assumed to be precise, however, due to the real applications of NN searching, suc...
متن کامل